Institucional
Notícias

Estudo: proteína que transporta metal no organismo é altamente flexível

Pesquisa do Instituto de Química da USP, em parceria com a Universidade de Nanjing, na China, descreveu pela primeira vez, em detalhes, o funcionamento da metalotioneína humana.


Pesquisa do Instituto de Química da USP, em parceria com a Universidade de Nanjing, na China, descreveu pela primeira vez, em detalhes, o funcionamento da metalotioneína humana, uma proteína responsável pelo controle da concentração de metais no organismo.

O estudo, descrito em artigo na revista Research, do grupo Science, mostra que os pesquisadores uniram técnicas de microscopia de força atômica e simulações moleculares por supercomputação para identificar como as ligações entre a proteína e os metais são estabelecidas e quebradas.

Devido ao seu papel no organismo, a proteína pode ajudar a entender o aparecimento de doenças neurodegenerativas associadas a metais, como Alzheimer e Parkinson, aperfeiçoando o seu diagnóstico.

Os cientistas constataram que a metalotioneína é altamente dinâmica, quase "líquida": não apresenta uma estrutura fixa e muda constantemente de acordo com as ligações químicas com os metais, que são de baixa estabilidade, quebram e reformam facilmente.

"Materiais contendo metais são duros e estáveis do ponto de vista macroscópico, mas microscopicamente mostramos que podem ser extremamente flexíveis", afirma Guilherme Menegon Arantes, professor do IQ e um dos coordenadores do estudo. "Essa mobilidade faz com que a estrutura da proteína possa ser comparada, por exemplo, com a de um líquido."

Além disso, a proteína é capaz de se ligar a dezenas de metais diferentes - desde metais naturais essenciais para o organismo, como zinco, a metais pesados e tóxicos, como cádmio e mercúrio. Essas características foram observadas pelos pesquisadores chineses com a microscopia de força atômica, uma tecnologia que permite manipular uma única molécula com resolução atômica e verificar as suas propriedades mecânicas e físico-químicas.

"Foi a primeira vez que os mecanismos de ação dessa proteína foram mostrados com esse nível de detalhamento", destaca Arantes.

Segundo ele, o próximo passo foi identificar exatamente quais ligações estavam sendo formadas e quebradas. "Para isso, o meu grupo realizou simulações computacionais da metalotioneína e seus múltiplos metais ligados. Nós usamos o computador Santos Dumont, o maior instalado no Brasil."

Importância para a saúdeA metalotioneína contribui com o equilíbrio das funções do organismo (homeostase), ao regular as concentrações de metais existentes no corpo humano. Quando estão livres no corpo, os metais - até mesmo os naturais e essenciais- podem se tornar tóxicos, causando reações danosas.

"Nós mostramos que a proteína é capaz de encapsular os metais, protegendo-os de terem reações adversas", afirma Arantes. No entanto, alguns metais que desempenham funções importantes, como o ferro e o zinco, precisam ser utilizados por outras proteínas.

"Por isso, as ligações são frágeis: para que a metalotioneína possa transportar e liberar os metais no momento certo para exercerem as suas atividades", completa.

Metais livres como zinco, cobre e ferro já foram associados a doenças neurodegenerativas. Isso porque os metais livres nos neurônios podem induzir algumas proteínas a se complexarem, impedindo-as de realizarem as suas funções corretamente.

"Essa complexação leva à produção de placas amiloides - depósitos de fragmentos de proteínas beta-amiloides, que são tóxicas para os neurônios. Essas placas são assinaturas de várias doenças neurológicas, como Alzheimer e Parkinson", explica o pesquisador.

"Os resultados do estudo ajudarão a entender como se dá o aparecimento dessas doenças, ajudando a aperfeiçoar o diagnóstico."

Outro problema decorrente de metais livres envolve o metabolismo energético. Os metais pesados podem atrapalhar o funcionamento da mitocôndria, organela responsável por gerar energia para os processos metabólicos.

"A presença desses metais aumenta a produção de radicais livres, que podem fazer reações em cadeia, não controladas, e lesar as células", diz Arantes.

O projeto foi possibilitado pelo financiamento da Fapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo) e pelo acordo de colaboração assinado entre o IQ e a Universidade de Nanjing, sob coordenação do professor Arantes.

"A Universidade de Nanjing é uma das mais produtivas do mundo, especialmente na área de química", ressalta o professor. Com duração de cinco anos, o acordo entre as instituições também inclui o intercâmbio de alunos e pesquisadores, ação que deve ser retomada após a pandemia.

Fonte:

Conselho Regional de Química 2ª Região

Minas Gerais

 Rua São Paulo, 409 - 16º Andar - Centro, Belo Horizonte - MG - 30170-902

 (31) 3279-9800 / (31) 3279-9801